Pinterest

Verken deze ideeën en meer!

Creating the Sierpinski triangle fractal with rotating triangles.

Creating the Sierpinski triangle fractal with rotating triangles.

Didier S - Google+

Didier S - Google+

Fraaaaaaaaaaaaaaaaaaaactallllllllls!

Fraaaaaaaaaaaaaaaaaaaactallllllllls!

Draw a circle on a piece of paper, and a random point inside. If you continually fold points on the edge of the circle on top of the point inside, then the fold marks will combine to form the shape of an ellipse. [code] [more] [inspiration] [bonus]

Draw a circle on a piece of paper, and a random point inside. If you continually fold points on the edge of the circle on top of the point inside, then the fold marks will combine to form the shape of an ellipse. [code] [more] [inspiration] [bonus]

Pretty sure this is witchcraft

Pretty sure this is witchcraft

uniformity...

uniformity…

uniformity...

The Harriss spiral is constructed from rectangles in the ratio of the plastic number (1.3247…),  in a similar way to how a Fibonacci spiral is created from rectangles in the related golden ratio (1.6180…). These plastic rectangles can be split into two smaller plastic rectangles, leaving a square. Recursively splitting the rectangles, and drawing curves in the squares gives this fractal spiral.

The Harriss spiral is constructed from rectangles in the ratio of the plastic number (1.3247…), in a similar way to how a Fibonacci spiral is created from rectangles in the related golden ratio (1.6180…). These plastic rectangles can be split into two smaller plastic rectangles, leaving a square. Recursively splitting the rectangles, and drawing curves in the squares gives this fractal spiral.

De opdracht dicteerde het zoeken van inspiratie in micro en macro structuren uit de natuur. Dit kon zowel van organische levende wezens ( dieren, planten, organismen) als an-organische materialen (…

Inspiratie: neuronen

De opdracht dicteerde het zoeken van inspiratie in micro en macro structuren uit de natuur. Dit kon zowel van organische levende wezens ( dieren, planten, organismen) als an-organische materialen (…

This is a good example of a curve that can be made up from lots of straight lines. Much like the geometric construction of the parabola. Challenge: if the black square has area 1, what is the area of the white shape in the middle? EDIT: Challenge 2, can you show this area is twice the probability that on a square dartboard, you will hit a point closer to the centre than to the edge?

This is a good example of a curve that can be made up from lots of straight lines. Much like the geometric construction of the parabola. Challenge: if the black square has area 1, what is the area of the white shape in the middle? EDIT: Challenge 2, can you show this area is twice the probability that on a square dartboard, you will hit a point closer to the centre than to the edge?

18. Ellipse - Wikipedia, the free encyclopedia

18. Ellipse - Wikipedia, the free encyclopedia

Perfect Fibonacci.. did you know you are made up of Sacred Geometry??  Can you think of any other examples?

Perfect Fibonacci.. did you know you are made up of Sacred Geometry?? Can you think of any other examples?

nationmindmachine:  Derivada de seno de izquierda a derechaintegral de coseno de derecha izquierda

nationmindmachine: Derivada de seno de izquierda a derechaintegral de coseno de derecha izquierda

Optische illusies en gezichtsbedrog

Optische illusies en gezichtsbedrog

Pitagoras fractal

Pitagoras fractal

infinity-imagined: “ The gravitational orbit of any moon, planet, star or galaxy forms a helix, when you view it traveling through a time dimension. A 3-dimensional helix is a ‘slice’ of the...

infinity-imagined: “ The gravitational orbit of any moon, planet, star or galaxy forms a helix, when you view it traveling through a time dimension. A 3-dimensional helix is a ‘slice’ of the...

Parametric Worldhttp://parametricworld.tumblr.com/post/77273755775/an-unusual-cut-of-a-tetrahedron-gives-shape-to

Parametric Worldhttp://parametricworld.tumblr.com/post/77273755775/an-unusual-cut-of-a-tetrahedron-gives-shape-to